TABLE OF CONTENTS

Science Collection

My collection for Science grades 5-12.

Collection Contents

"Cow Power" Lesson Plans

by the.News http://www.pbs.org/newshour/thenews/

Science Curriculum: Helps students understand atmospheric processes and the water cycle as well as the structure and function of cells and organisms and their relationship to their physical environment. Economics Curriculum: Analyzes the potential success of products made from cow manure. Language Arts Curriculum: Investigates the journalistic process and the possibility of the "lead" changing as new information is revealed to the journalist. The accompanying video can be found online at http://www.pbs.org/newshour/thenews/theplanet/.
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

"Cow Power" Script

by the.News http://www.pbs.org/newshour/thenews/

Reporter Stacey Delikat digs deep to discover what one Vermont farm is doing to lower its energy bills. The accompanying video can be found online at http://www.pbs.org/newshour/thenews/thedollar/.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Unit plan, 6 lessons and resources. Students will learn about the brain (structure, functions, what it needs to stay healthy) using brain-based learning. Students will understand that everyone has a different kind of mind and that everyone learns differently.
Member Rating
Curriki Rating3
On a scale of 0 to 3

The Earth is a dynamic system, constantly changing through a multitude of systems; the geologic, hydrologic, atmospheric and biologic systems are all integral to one another. Despite the fact that we inhabit this blue planet many of us are unaware of how even the simplest of systems work between one another and how even a small perturbation in one system can ripple through them all. The curriculum that follows will outline the systems of the earth and draw upon their interconnectedness to bring about a new found understanding of our environment and the critical modern day issues we are facing now and in the future. Through a multitude of hands-on and investigative lessons and activities this series will help students take their prior knowledge and combine it with new understandings and conflicts to ultimately apply the information gained in the local communities for a culminating environmental action project. This curriculum is meant for students who have already progressed through some earth science classes. There are many lessons within the collection that can be pulled out and used separately from the curriculum as a whole. The 5th Unit covers many topics addressed in a book called The Revenge of Gaia: Earth's Climate Crisis & The Fate of Humanity, by James Lovelock, 160 pages with glossary. I recommend this as a reading for the semester, especially during Unit 5 though it is not a requirement to follow the science or the lessons. The Revenge of Gaia, James Lovelock, 2006 ISBN-13: 978-0-465-04168-8 ISBN-10: 0-465-04168-X British ISBNs: 978-0-713-99914-3; 0-713-99914-4
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chapter 29: Plant Diversity I contains external links to: Rainforest Plant Adaptations Science Safari: Mr. Cele's Garden Plant Evolution Lab How Plants Cope with the Desert Climate This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chapter 1: The Chemistry of Life contains external links to: The Chemistry of Life Introduction Tutorial and Problem Set Garbage Grunge This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Biology

by Sal Khan

This collection is a complete course in Biology for high school or college.
Member Rating
Curriki Rating3
On a scale of 0 to 3

This unit talks about reproduction.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Physics

by Sal Khan

This collection is a complete video course of instruction in advanced high school or college level Physics
Member Rating
Curriki Rating3
On a scale of 0 to 3

This unit focuses on spiraling concepts of the atom, the electromagnetic spectrum, energy, material properties and nanotechnology. All lab activities are student-centered inquiry labs which are open-ended. The unit also includes two POGIL activities, which should be completed within student groups of 3-4 students.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Physics

by Vin Dionisio SPF Public Schools

This contains courses of study and resources for college-preparatory and general level physics.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chemistry

by Vin Dionisio SPF Public Schools

This resource folder contains course guides, lessons, activities, and laboratory experiments for college-preparatory and general level chemistry students.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This collection is a complete high school or college course in Chemistry.
Member Rating
Curriki Rating3
On a scale of 0 to 3

College Preparatory Chemistry

by Vin Dionisio SPF Public Schools

Mahwah Township (NJ) Public Schools course guide for college-preparatory chemistry
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

1 - Chemisty, the Essential Elements

by Curriki Textbook Group

Text
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Course Guide - College Prep Chemistry

by Vin Dionisio SPF Public Schools

Course Guide - Scope & Sequence
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

2 Biochemistry

by Robert Lucas

This unit includes resources, such as slide shows, worksheets, and labs on biochemistry for high school biology students. This unit is part of the Developing Biology course.
Member Rating
Curriki Rating2
On a scale of 0 to 3

This collection highlights some useful site on the Web for teaching general chemistry topics.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chemistry Digital Textbook (Word)

by Curriki Textbook Group

This collection has been organized to meet the CA Science Standards for Chemistry in grades 9 ? 12, as adopted by the California State Board of Education.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Acids and Bases

by Sal Khan

Member Rating
Curriki Rating3
On a scale of 0 to 3

A powerpoint and note sheet on types of reactions complete with demos.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Activities and Labs

by Meredith Phillips

This folder contains labs, games, and other activities that can be used to supplement a high-school Chemistry course. This resource is part of the Supplement Your Chemistry Course collection.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This application is an interactive Periodic Table. It has been designed as a learning tool to help the beginning high school or undergraduate chemistry student gain insight. It could be used either as a lecture aid or distributed to students.
Member Rating
Curriki Rating3
On a scale of 0 to 3

This application is an interactive Periodic Table. It has been designed as a learning tool to help the beginning high school or undergraduate chemistry student gain insight. It could be used either as a lecture aid or distributed to students.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Substances Changing States

by Curriculum Corporation - The Learning Federation initiative

This animation illustrates the processes by which substances change states. For example, from a solid to a gas via the process of sublimation. The role of temperature changes in these processes is also demonstrated.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Fantastic Chemistry resource for interactive simulations that can create a report for each student or group working on the simulations. There are many, many interactive resources for use in a computer lab setting or as teacher lead instruction.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Wonderful simulations. Most useful as interactive instruction by the instructor. The material is from a group developed many physics simulations first, if you need more chemistry topics look at molecular workbench.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Students often do not see the point in solving formulas for a particular variable when there are no values given. This lab is not designed to teach how to solve literal equations, but rather to give students an understanding of why one might need to do so. This lab has students substitute values into the basic interest formula and then solve for the missing value. After solving several problems in this form, they solve the formula for that variable and then evaluate it by substituting in the given information. Students discover for themselves that it is sometimes better to solve for the variable first and then input the values when solving several problems for the same variable.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Assessments

by Phillip Cook

Formative and summative assessments for the LED unit, including answer keys.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Applied Regents Chemistry 2009

by Jennifer Steigerwald Massapequa School District

Curriculum for Applied Regents Chemistry written by Daniel Cohen, Barbara Fogel and Brian Luca. Goal: Massapequa High School is now offering a course in Applied Regents Chemistry. Students enrolled in this course are required to take the Regents exam in June. Students are also required to complete a minimum of thirty (30) lab hours as the lab requirement necessary to be eligible to sit for the Regents exam. The Applied Regents Chemistry course will focus more on application and theory as compared to the currently offered Regents Chemistry course. Each area of study will begin with a discussion of a real world application related to the topic. Each area of study, in the Applied Regents Chemistry course, will be the same as that of the Regents Chemistry course and will be taught in the same order. A major difference will be that information which is not tested on the Regents exam will not be stressed in the Applied Chemistry course. Also, the level of difficulty will be less rigorous than in the Regents Chemistry course. The labs performed for each area of study will be the same or similar to those of the Regents Chemistry course differing mainly in scope of the lab report and difficulty of the lab conclusion questions.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This is the first unit (Chemistry of Life) with embedded documents and links. Students will explore proper safety procedures, lab writing skills and measurement. Students will also learn about the four major types of organic molecules, the functions of proteins in cells and the factors influence the structure and function of enzymes.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Students use background information about a sample of propionic acid to calculate the empirical and molecular formula of the compound.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

High School Chemistry

by Sandy Kliewer

Resources I use in my high school chemistry course aimed a juniors and seniors. We use the Holt Modern Chemistry textbook.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Chemistry

by Siyavula Siyavula

This collection is a full course of material in the form of a textbook. The textbook is provided by FHSST (Free High School Science Texts). FHSST is a project that aims to provide free science and mathematics textbooks for Grades 10 to 12 science learners. The project was initiated by young South African scientists, and now brings together scientists from around the world who are willing to contribute to the writing of the books. This FHSST Chemistry textbook contains a total of 23 chapters to be used in grades 10 through 12. At the end of this description is a complete Table of Contents. In this collection, you will find folders for each of the main sections (Matter and Materials, Chemical Change, and Chemical Systems). These folders include content across all three grade levels, G10, G11, G12. You will also find folders with just G10, just G11, and just G12 chapters if you are teaching a particular grade. TABLE OF CONTENTS II MATTER AND MATERIALS 1 Classification of Matter - Grade 10 1.1 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Heterogeneous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Homogeneous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 Separating mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Pure Substances: Elements and Compounds . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Giving names and formulae to substances . . . . . . . . . . . . . . . . . . . . . 10 1.4 Metals, Semi-metals and Non-metals . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 Non-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4.3 Semi-metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Electrical conductors, semi-conductors and insulators . . . . . . . . . . . . . . . 14 1.6 Thermal Conductors and Insulators . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Magnetic and Non-magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . 17 1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 What are the objects around us made of? - Grade 10 2.1 Introduction: The atom as the building block of matter . . . . . . . . . . . . . . 21 2.2 Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Representing molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Intramolecular and intermolecular forces . . . . . . . . . . . . . . . . . . . . . . 25 2.4 The Kinetic Theory of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 The Properties of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 The Atom - Grade 10 3.1 Models of the Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 The Plum Pudding Model . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Rutherford’s model of the atom . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3 The Bohr Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 How big is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 How heavy is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 How big is an atom? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Atomic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 The Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 The Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Atomic number and atomic mass number . . . . . . . . . . . . . . . . . . . . . 40 3.5 Isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.1 What is an isotope? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5.2 Relative atomic mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.6 Energy quantisation and electron configuration . . . . . . . . . . . . . . . . . . 46 3.6.1 The energy of electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6.2 Energy quantisation and line emission spectra . . . . . . . . . . . . . . . 47 3.6.3 Electron configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6.4 Core and valence electrons . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.5 The importance of understanding electron configuration . . . . . . . . . 51 3.7 Ionisation Energy and the Periodic Table . . . . . . . . . . . . . . . . . . . . . . 53 3.7.1 Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.7.2 Ionisation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.8 The Arrangement of Atoms in the Periodic Table . . . . . . . . . . . . . . . . . 56 3.8.1 Groups in the periodic table . . . . . . . . . . . . . . . . . . . . . . . . 56 3.8.2 Periods in the periodic table . . . . . . . . . . . . . . . . . . . . . . . . 58 3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Atomic Combinations - Grade 11 4.1 Why do atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Energy and bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 What happens when atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.1 The nature of the covalent bond . . . . . . . . . . . . . . . . . . . . . . 65 4.5 Lewis notation and molecular structure . . . . . . . . . . . . . . . . . . . . . . . 69 4.6 Electronegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.1 Non-polar and polar covalent bonds . . . . . . . . . . . . . . . . . . . . 73 4.6.2 Polar molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.7 Ionic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.1 The nature of the ionic bond . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.2 The crystal lattice structure of ionic compounds . . . . . . . . . . . . . . 76 4.7.3 Properties of Ionic Compounds . . . . . . . . . . . . . . . . . . . . . . . 76 4.8 Metallic bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.8.1 The nature of the metallic bond . . . . . . . . . . . . . . . . . . . . . . 76 4.8.2 The properties of metals . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.9 Writing chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.9.1 The formulae of covalent compounds . . . . . . . . . . . . . . . . . . . . 78 4.9.2 The formulae of ionic compounds . . . . . . . . . . . . . . . . . . . . . 80 4.10 The Shape of Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.10.1 Valence Shell Electron Pair Repulsion (VSEPR) theory . . . . . . . . . . 82 4.10.2 Determining the shape of a molecule . . . . . . . . . . . . . . . . . . . . 82 4.11 Oxidation numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Intermolecular Forces - Grade 11 5.1 Types of Intermolecular Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 Understanding intermolecular forces . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 Intermolecular forces in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Solutions and solubility - Grade 11 6.1 Types of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Forces and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 Atomic Nuclei - Grade 11 7.1 Nuclear structure and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2 The Discovery of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.3 Radioactivity and Types of Radiation . . . . . . . . . . . . . . . . . . . . . . . . 108 7.3.1 Alpha (_) particles and alpha decay . . . . . . . . . . . . . . . . . . . . 109 7.3.2 Beta (_) particles and beta decay . . . . . . . . . . . . . . . . . . . . . 109 7.3.3 Gamma () rays and gamma decay . . . . . . . . . . . . . . . . . . . . . 110 7.4 Sources of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.1 Natural background radiation . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.2 Man-made sources of radiation . . . . . . . . . . . . . . . . . . . . . . . 113 7.5 The ’half-life’ of an element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.6 The Dangers of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.7 The Uses of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.8 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.8.1 The Atomic bomb - an abuse of nuclear fission . . . . . . . . . . . . . . 119 7.8.2 Nuclear power - harnessing energy . . . . . . . . . . . . . . . . . . . . . 120 7.9 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.10 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.10.1 Age of Nucleosynthesis (225 s - 103 s) . . . . . . . . . . . . . . . . . . . 121 7.10.2 Age of Ions (103 s - 1013 s) . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.10.3 Age of Atoms (1013 s - 1015 s) . . . . . . . . . . . . . . . . . . . . . . . 122 7.10.4 Age of Stars and Galaxies (the universe today) . . . . . . . . . . . . . . 122 7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8 Thermal Properties and Ideal Gases - Grade 11 8.1 A review of the kinetic theory of matter . . . . . . . . . . . . . . . . . . . . . . 125 8.2 Boyle’s Law: Pressure and volume of an enclosed gas . . . . . . . . . . . . . . . 126 8.3 Charles’s Law: Volume and Temperature of an enclosed gas . . . . . . . . . . . 132 8.4 The relationship between temperature and pressure . . . . . . . . . . . . . . . . 136 8.5 The general gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.6 The ideal gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.7 Molar volume of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.8 Ideal gases and non-ideal gas behaviour . . . . . . . . . . . . . . . . . . . . . . 146 8.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9 Organic Molecules - Grade 12 9.1 What is organic chemistry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.2 Sources of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.3 Unique properties of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4 Representing organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4.1 Molecular formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4.2 Structural formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.4.3 Condensed structural formula . . . . . . . . . . . . . . . . . . . . . . . . 153 9.5 Isomerism in organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6 Functional groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.7 The Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.7.1 The Alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.7.2 Naming the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.3 Properties of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.7.4 Reactions of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.7.5 The alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.7.6 Naming the alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.7.7 The properties of the alkenes . . . . . . . . . . . . . . . . . . . . . . . . 169 9.7.8 Reactions of the alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9.7.9 The Alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.7.10 Naming the alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.8 The Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.8.1 Naming the alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.8.2 Physical and chemical properties of the alcohols . . . . . . . . . . . . . . 175 9.9 Carboxylic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.9.1 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9.9.2 Derivatives of carboxylic acids: The esters . . . . . . . . . . . . . . . . . 178 9.10 The Amino Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.11 The Carbonyl Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10 Organic Macromolecules - Grade 12 10.1 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.2 How do polymers form? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.2.1 Addition polymerisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.2.2 Condensation polymerisation . . . . . . . . . . . . . . . . . . . . . . . . 188 10.3 The chemical properties of polymers . . . . . . . . . . . . . . . . . . . . . . . . 190 10.4 Types of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.5 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.5.1 The uses of plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10.5.2 Thermoplastics and thermosetting plastics . . . . . . . . . . . . . . . . . 194 10.5.3 Plastics and the environment . . . . . . . . . . . . . . . . . . . . . . . . 195 10.6 Biological Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.6.1 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 10.6.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 10.6.3 Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 III CHEMICAL CHANGE 11 Physical and Chemical Change - Grade 10 11.1 Physical changes in matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.2 Chemical Changes in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.2.1 Decomposition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 213 11.2.2 Synthesis reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 11.3 Energy changes in chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . 217 11.4 Conservation of atoms and mass in reactions . . . . . . . . . . . . . . . . . . . . 217 11.5 Law of constant composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.6 Volume relationships in gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 12 Representing Chemical Change - Grade 10 12.1 Chemical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 12.2 Writing chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.3 Balancing chemical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.3.1 The law of conservation of mass . . . . . . . . . . . . . . . . . . . . . . 224 12.3.2 Steps to balance a chemical equation . . . . . . . . . . . . . . . . . . . 226 12.4 State symbols and other information . . . . . . . . . . . . . . . . . . . . . . . . 230 12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 13 Quantitative Aspects of Chemical Change - Grade 11 13.1 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 13.2 Molar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 13.3 An equation to calculate moles and mass in chemical reactions . . . . . . . . . . 237 13.4 Molecules and compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 13.5 The Composition of Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.6 Molar Volumes of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 13.7 Molar concentrations in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 13.8 Stoichiometric calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 14 Energy Changes In Chemical Reactions - Grade 11 14.1 What causes the energy changes in chemical reactions? . . . . . . . . . . . . . . 255 14.2 Exothermic and endothermic reactions . . . . . . . . . . . . . . . . . . . . . . . 255 14.3 The heat of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 14.4 Examples of endothermic and exothermic reactions . . . . . . . . . . . . . . . . 259 14.5 Spontaneous and non-spontaneous reactions . . . . . . . . . . . . . . . . . . . . 260 14.6 Activation energy and the activated complex . . . . . . . . . . . . . . . . . . . . 261 14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 15 Types of Reactions - Grade 11 15.1 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.1 What are acids and bases? . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.2 Defining acids and bases . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.3 Conjugate acid-base pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.1.4 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 15.1.5 Acid-carbonate reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 274 15.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 15.2.1 Oxidation and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 277 15.2.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 15.3 Addition, substitution and elimination reactions . . . . . . . . . . . . . . . . . . 280 15.3.1 Addition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 15.3.2 Elimination reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 15.3.3 Substitution reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 15.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 16 Reaction Rates - Grade 12 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.2 Factors affecting reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 16.3 Reaction rates and collision theory . . . . . . . . . . . . . . . . . . . . . . . . . 293 16.4 Measuring Rates of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 16.5 Mechanism of reaction and catalysis . . . . . . . . . . . . . . . . . . . . . . . . 297 16.6 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 16.6.1 Open and closed systems . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.2 Reversible reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.3 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 16.7 The equilibrium constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 16.7.1 Calculating the equilibrium constant . . . . . . . . . . . . . . . . . . . . 305 16.7.2 The meaning of kc values . . . . . . . . . . . . . . . . . . . . . . . . . . 306 16.8 Le Chatelier’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 16.8.1 The effect of concentration on equilibrium . . . . . . . . . . . . . . . . . 310 16.8.2 The effect of temperature on equilibrium . . . . . . . . . . . . . . . . . . 310 16.8.3 The effect of pressure on equilibrium . . . . . . . . . . . . . . . . . . . . 312 16.9 Industrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 16.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 17 Electrochemical Reactions - Grade 12 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 17.2 The Galvanic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 17.2.1 Half-cell reactions in the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . 321 17.2.2 Components of the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . . . . 322 17.2.3 The Galvanic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 17.2.4 Uses and applications of the galvanic cell . . . . . . . . . . . . . . . . . 324 17.3 The Electrolytic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 17.3.1 The electrolysis of copper sulphate . . . . . . . . . . . . . . . . . . . . . 326 17.3.2 The electrolysis of water . . . . . . . . . . . . . . . . . . . . . . . . . . 327 17.3.3 A comparison of galvanic and electrolytic cells . . . . . . . . . . . . . . . 328 17.4 Standard Electrode Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 17.4.1 The different reactivities of metals . . . . . . . . . . . . . . . . . . . . . 329 17.4.2 Equilibrium reactions in half cells . . . . . . . . . . . . . . . . . . . . . . 329 17.4.3 Measuring electrode potential . . . . . . . . . . . . . . . . . . . . . . . . 330 17.4.4 The standard hydrogen electrode . . . . . . . . . . . . . . . . . . . . . . 330 17.4.5 Standard electrode potentials . . . . . . . . . . . . . . . . . . . . . . . . 333 17.4.6 Combining half cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 17.4.7 Uses of standard electrode potential . . . . . . . . . . . . . . . . . . . . 338 17.5 Balancing redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 17.6 Applications of electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.1 Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.2 The production of chlorine . . . . . . . . . . . . . . . . . . . . . . . . . 348 17.6.3 Extraction of aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . 349 17.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 IV CHEMICAL SYSTEMS 18 The Water Cycle - Grade 10 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 18.2 The importance of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 18.3 The movement of water through the water cycle . . . . . . . . . . . . . . . . . . 356 18.4 The microscopic structure of water . . . . . . . . . . . . . . . . . . . . . . . . . 359 18.4.1 The polar nature of water . . . . . . . . . . . . . . . . . . . . . . . . . . 359 18.4.2 Hydrogen bonding in water molecules . . . . . . . . . . . . . . . . . . . 359 18.5 The unique properties of water . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 18.6 Water conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 19 Global Cycles: The Nitrogen Cycle – Grade 10 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 19.2 Nitrogen fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 19.3 Nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 19.4 Denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 19.5 Human Influences on the Nitrogen Cycle . . . . . . . . . . . . . . . . . . . . . . 372 19.6 The industrial fixation of nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . 373 19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 20 The Hydrosphere - Grade 10 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 20.2 Interactions of the hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 20.3 Exploring the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 20.4 The Importance of the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . 379 20.5 Ions in aqueous solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 20.5.1 Dissociation in water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 20.5.2 Ions and water hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 20.5.3 The pH scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 20.5.4 Acid rain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 20.6 Electrolytes, ionisation and conductivity . . . . . . . . . . . . . . . . . . . . . . 386 20.6.1 Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 20.6.2 Non-electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 20.6.3 Factors that affect the conductivity of water . . . . . . . . . . . . . . . . 387 20.7 Precipitation reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 20.8 Testing for common anions in solution . . . . . . . . . . . . . . . . . . . . . . . 391 20.8.1 Test for a chloride . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 20.8.2 Test for a sulphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 20.8.3 Test for a carbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 20.8.4 Test for bromides and iodides . . . . . . . . . . . . . . . . . . . . . . . . 392 20.9 Threats to the Hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 20.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 21 The Lithosphere - Grade 11 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 21.2 The chemistry of the earth’s crust . . . . . . . . . . . . . . . . . . . . . . . . . 398 21.3 A brief history of mineral use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 21.4 Energy resources and their uses . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 21.5 Mining and Mineral Processing: Gold . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.2 Mining the Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.3 Processing the gold ore . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.4 Characteristics and uses of gold . . . . . . . . . . . . . . . . . . . . . . . 402 21.5.5 Environmental impacts of gold mining . . . . . . . . . . . . . . . . . . . 404 21.6 Mining and mineral processing: Iron . . . . . . . . . . . . . . . . . . . . . . . . 406 21.6.1 Iron mining and iron ore processing . . . . . . . . . . . . . . . . . . . . . 406 21.6.2 Types of iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 21.6.3 Iron in South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 21.7 Mining and mineral processing: Phosphates . . . . . . . . . . . . . . . . . . . . 409 21.7.1 Mining phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 21.7.2 Uses of phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 21.8 Energy resources and their uses: Coal . . . . . . . . . . . . . . . . . . . . . . . 411 21.8.1 The formation of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 21.8.2 How coal is removed from the ground . . . . . . . . . . . . . . . . . . . 411 21.8.3 The uses of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 21.8.4 Coal and the South African economy . . . . . . . . . . . . . . . . . . . . 412 21.8.5 The environmental impacts of coal mining . . . . . . . . . . . . . . . . . 413 21.9 Energy resources and their uses: Oil . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.1 How oil is formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.2 Extracting oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.3 Other oil products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 21.9.4 The environmental impacts of oil extraction and use . . . . . . . . . . . 415 21.10Alternative energy resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 21.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 22 The Atmosphere - Grade 11 22.1 The composition of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 421 22.2 The structure of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.1 The troposphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.2 The stratosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.3 The mesosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 22.2.4 The thermosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 22.3 Greenhouse gases and global warming . . . . . . . . . . . . . . . . . . . . . . . 426 22.3.1 The heating of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . 426 22.3.2 The greenhouse gases and global warming . . . . . . . . . . . . . . . . . 426 22.3.3 The consequences of global warming . . . . . . . . . . . . . . . . . . . . 429 22.3.4 Taking action to combat global warming . . . . . . . . . . . . . . . . . . 430 22.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431 23 The Chemical Industry - Grade 12 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 23.2 Sasol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 23.2.1 Sasol today: Technology and production . . . . . . . . . . . . . . . . . . 436 23.2.2 Sasol and the environment . . . . . . . . . . . . . . . . . . . . . . . . . 440 23.3 The Chloralkali Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 23.3.1 The Industrial Production of Chlorine and Sodium Hydroxide . . . . . . . 442 23.3.2 Soaps and Detergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 23.4 The Fertiliser Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.1 The value of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.2 The Role of fertilisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.3 The Industrial Production of Fertilisers . . . . . . . . . . . . . . . . . . . 451 23.4.4 Fertilisers and the Environment: Eutrophication . . . . . . . . . . . . . . 454 23.5 Electrochemistry and batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 23.5.1 How batteries work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 23.5.2 Battery capacity and energy . . . . . . . . . . . . . . . . . . . . . . . . 457 23.5.3 Lead-acid batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 23.5.4 The zinc-carbon dry cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 23.5.5 Environmental considerations . . . . . . . . . . . . . . . . . . . . . . . . 460 23.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Member Rating
Curriki Rating3
On a scale of 0 to 3

Chapter 44: Circulation and Gas Exchange contains external links to: Lung Toxicology Tutorial and Problem Set Respiratory System Activities This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chapter 4: Carbon and the Molecular Diversity of Life contains external links to: Carbon Cycle Activity I Carbon Cycle Activity II This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

An open source collection of self-education biology links (consisting of lessons, tutorials, experiments, labs, activities, and other resources) for OLPC children across the globe. The biology topics covered include life, the cell, genetics, evolution, biological diversity, plants, animals, ecology, and astrobiology.
Member Rating
Curriki Rating2
On a scale of 0 to 3

UOP description of Chemistry Lab Research Keynote presentation.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chapter 25: Phylogeny and Systematics contains external links to: Phylogenetic Systematics, a.k.a. Evolutionary Trees Similarities and Differences: Understanding Homology and Anology This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Chapter 27: Prokaryotes

by Alison Loomis

Chapter 27: Prokaryotes contains external links to: Prokaryotes, Eukaryotes, & Viruses Tutorial and Problem Set Molecular Genetics of Prokaryotes Tutorial and Problem Set Bacterial Terrarium This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This site offers 8 environmental experiments: Experiment 1: Measuring pH Experiment 2: Determining the pH of Common Substances Experiment 3: Making a Natural pH Indicator Experiment 4: Measuring Soil pH Experiment 5: Soil Buffering Experiment 6: Observing the Influence of Acid Rain on Plant Growth Experiment 7: Observing Buffers in Lakes, Ponds, and Streams Experiment 8: Looking at Acid's Effects on Metals This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This folder contains 7 chapters from the FHSST (Free High School Science Texts) Chemistry textbook. FHSST is a project that aims to provide free science and mathematics textbooks for Grades 10 to 12 science learners. The project was initiated by young South African scientists, and now brings together scientists from around the world who are willing to contribute to the writing of the books. These Chemical Change chapters are to be used in grades 10 through 12. Below is a complete Table of Contents for this section. This resource is part of the FHSST Chemistry collection. TABLE OF CONTENTS III CHEMICAL CHANGE 11 Physical and Chemical Change - Grade 10 11.1 Physical changes in matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 11.2 Chemical Changes in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 11.2.1 Decomposition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 213 11.2.2 Synthesis reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 11.3 Energy changes in chemical reactions . . . . . . . . . . . . . . . . . . . . . . . . 217 11.4 Conservation of atoms and mass in reactions . . . . . . . . . . . . . . . . . . . . 217 11.5 Law of constant composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.6 Volume relationships in gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 12 Representing Chemical Change - Grade 10 12.1 Chemical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 12.2 Writing chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.3 Balancing chemical equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 12.3.1 The law of conservation of mass . . . . . . . . . . . . . . . . . . . . . . 224 12.3.2 Steps to balance a chemical equation . . . . . . . . . . . . . . . . . . . 226 12.4 State symbols and other information . . . . . . . . . . . . . . . . . . . . . . . . 230 12.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 13 Quantitative Aspects of Chemical Change - Grade 11 13.1 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 13.2 Molar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 13.3 An equation to calculate moles and mass in chemical reactions . . . . . . . . . . 237 13.4 Molecules and compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 13.5 The Composition of Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.6 Molar Volumes of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 13.7 Molar concentrations in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 13.8 Stoichiometric calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 14 Energy Changes In Chemical Reactions - Grade 11 14.1 What causes the energy changes in chemical reactions? . . . . . . . . . . . . . . 255 14.2 Exothermic and endothermic reactions . . . . . . . . . . . . . . . . . . . . . . . 255 14.3 The heat of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 14.4 Examples of endothermic and exothermic reactions . . . . . . . . . . . . . . . . 259 14.5 Spontaneous and non-spontaneous reactions . . . . . . . . . . . . . . . . . . . . 260 14.6 Activation energy and the activated complex . . . . . . . . . . . . . . . . . . . . 261 14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 15 Types of Reactions - Grade 11 15.1 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.1 What are acids and bases? . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.2 Defining acids and bases . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.3 Conjugate acid-base pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.1.4 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 15.1.5 Acid-carbonate reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 274 15.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 15.2.1 Oxidation and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 277 15.2.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 15.3 Addition, substitution and elimination reactions . . . . . . . . . . . . . . . . . . 280 15.3.1 Addition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 15.3.2 Elimination reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 15.3.3 Substitution reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 15.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 16 Reaction Rates - Grade 12 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.2 Factors affecting reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 16.3 Reaction rates and collision theory . . . . . . . . . . . . . . . . . . . . . . . . . 293 16.4 Measuring Rates of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 16.5 Mechanism of reaction and catalysis . . . . . . . . . . . . . . . . . . . . . . . . 297 16.6 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 16.6.1 Open and closed systems . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.2 Reversible reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.3 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 16.7 The equilibrium constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 16.7.1 Calculating the equilibrium constant . . . . . . . . . . . . . . . . . . . . 305 16.7.2 The meaning of kc values . . . . . . . . . . . . . . . . . . . . . . . . . . 306 16.8 Le Chatelier’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 16.8.1 The effect of concentration on equilibrium . . . . . . . . . . . . . . . . . 310 16.8.2 The effect of temperature on equilibrium . . . . . . . . . . . . . . . . . . 310 16.8.3 The effect of pressure on equilibrium . . . . . . . . . . . . . . . . . . . . 312 16.9 Industrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 16.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 17 Electrochemical Reactions - Grade 12 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 17.2 The Galvanic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 17.2.1 Half-cell reactions in the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . 321 17.2.2 Components of the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . . . . 322 17.2.3 The Galvanic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 17.2.4 Uses and applications of the galvanic cell . . . . . . . . . . . . . . . . . 324 17.3 The Electrolytic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 17.3.1 The electrolysis of copper sulphate . . . . . . . . . . . . . . . . . . . . . 326 17.3.2 The electrolysis of water . . . . . . . . . . . . . . . . . . . . . . . . . . 327 17.3.3 A comparison of galvanic and electrolytic cells . . . . . . . . . . . . . . . 328 17.4 Standard Electrode Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 17.4.1 The different reactivities of metals . . . . . . . . . . . . . . . . . . . . . 329 17.4.2 Equilibrium reactions in half cells . . . . . . . . . . . . . . . . . . . . . . 329 17.4.3 Measuring electrode potential . . . . . . . . . . . . . . . . . . . . . . . . 330 17.4.4 The standard hydrogen electrode . . . . . . . . . . . . . . . . . . . . . . 330 17.4.5 Standard electrode potentials . . . . . . . . . . . . . . . . . . . . . . . . 333 17.4.6 Combining half cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 17.4.7 Uses of standard electrode potential . . . . . . . . . . . . . . . . . . . . 338 17.5 Balancing redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 17.6 Applications of electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.1 Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.2 The production of chlorine . . . . . . . . . . . . . . . . . . . . . . . . . 348 17.6.3 Extraction of aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . 349 17.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Member Rating
Curriki Rating3
On a scale of 0 to 3

This folder contains 10 chapters from the FHSST (Free High School Science Texts) Chemistry textbook. FHSST is a project that aims to provide free science and mathematics textbooks for Grades 10 to 12 science learners. The project was initiated by young South African scientists, and now brings together scientists from around the world who are willing to contribute to the writing of the books. These chapters come from Chemistry sub-topics such as Matters and Material, Chemical Change, and Chemical Systems but cover only chapters relevant to Grade 11. Below is a complete Table of Contents for this section. This resource is part of the FHSST Chemistry collection. TABLE OF CONTENTS II MATTER AND MATERIALS 4 Atomic Combinations - Grade 11 4.1 Why do atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Energy and bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 What happens when atoms bond? . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Covalent Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.1 The nature of the covalent bond . . . . . . . . . . . . . . . . . . . . . . 65 4.5 Lewis notation and molecular structure . . . . . . . . . . . . . . . . . . . . . . . 69 4.6 Electronegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.1 Non-polar and polar covalent bonds . . . . . . . . . . . . . . . . . . . . 73 4.6.2 Polar molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.7 Ionic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.1 The nature of the ionic bond . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.2 The crystal lattice structure of ionic compounds . . . . . . . . . . . . . . 76 4.7.3 Properties of Ionic Compounds . . . . . . . . . . . . . . . . . . . . . . . 76 4.8 Metallic bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.8.1 The nature of the metallic bond . . . . . . . . . . . . . . . . . . . . . . 76 4.8.2 The properties of metals . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.9 Writing chemical formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.9.1 The formulae of covalent compounds . . . . . . . . . . . . . . . . . . . . 78 4.9.2 The formulae of ionic compounds . . . . . . . . . . . . . . . . . . . . . 80 4.10 The Shape of Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.10.1 Valence Shell Electron Pair Repulsion (VSEPR) theory . . . . . . . . . . 82 4.10.2 Determining the shape of a molecule . . . . . . . . . . . . . . . . . . . . 82 4.11 Oxidation numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5 Intermolecular Forces - Grade 11 5.1 Types of Intermolecular Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 Understanding intermolecular forces . . . . . . . . . . . . . . . . . . . . . . . . 94 5.3 Intermolecular forces in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Solutions and solubility - Grade 11 6.1 Types of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Forces and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7 Atomic Nuclei - Grade 11 7.1 Nuclear structure and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.2 The Discovery of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.3 Radioactivity and Types of Radiation . . . . . . . . . . . . . . . . . . . . . . . . 108 7.3.1 Alpha (_) particles and alpha decay . . . . . . . . . . . . . . . . . . . . 109 7.3.2 Beta (_) particles and beta decay . . . . . . . . . . . . . . . . . . . . . 109 7.3.3 Gamma () rays and gamma decay . . . . . . . . . . . . . . . . . . . . . 110 7.4 Sources of radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.1 Natural background radiation . . . . . . . . . . . . . . . . . . . . . . . . 112 7.4.2 Man-made sources of radiation . . . . . . . . . . . . . . . . . . . . . . . 113 7.5 The ’half-life’ of an element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.6 The Dangers of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.7 The Uses of Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.8 Nuclear Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.8.1 The Atomic bomb - an abuse of nuclear fission . . . . . . . . . . . . . . 119 7.8.2 Nuclear power - harnessing energy . . . . . . . . . . . . . . . . . . . . . 120 7.9 Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.10 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.10.1 Age of Nucleosynthesis (225 s - 103 s) . . . . . . . . . . . . . . . . . . . 121 7.10.2 Age of Ions (103 s - 1013 s) . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.10.3 Age of Atoms (1013 s - 1015 s) . . . . . . . . . . . . . . . . . . . . . . . 122 7.10.4 Age of Stars and Galaxies (the universe today) . . . . . . . . . . . . . . 122 7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8 Thermal Properties and Ideal Gases - Grade 11 8.1 A review of the kinetic theory of matter . . . . . . . . . . . . . . . . . . . . . . 125 8.2 Boyle’s Law: Pressure and volume of an enclosed gas . . . . . . . . . . . . . . . 126 8.3 Charles’s Law: Volume and Temperature of an enclosed gas . . . . . . . . . . . 132 8.4 The relationship between temperature and pressure . . . . . . . . . . . . . . . . 136 8.5 The general gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.6 The ideal gas equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.7 Molar volume of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.8 Ideal gases and non-ideal gas behaviour . . . . . . . . . . . . . . . . . . . . . . 146 8.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 III CHEMICAL CHANGE 13 Quantitative Aspects of Chemical Change - Grade 11 13.1 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 13.2 Molar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 13.3 An equation to calculate moles and mass in chemical reactions . . . . . . . . . . 237 13.4 Molecules and compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 13.5 The Composition of Substances . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 13.6 Molar Volumes of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 13.7 Molar concentrations in liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 13.8 Stoichiometric calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 13.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 14 Energy Changes In Chemical Reactions - Grade 11 14.1 What causes the energy changes in chemical reactions? . . . . . . . . . . . . . . 255 14.2 Exothermic and endothermic reactions . . . . . . . . . . . . . . . . . . . . . . . 255 14.3 The heat of reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 14.4 Examples of endothermic and exothermic reactions . . . . . . . . . . . . . . . . 259 14.5 Spontaneous and non-spontaneous reactions . . . . . . . . . . . . . . . . . . . . 260 14.6 Activation energy and the activated complex . . . . . . . . . . . . . . . . . . . . 261 14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 15 Types of Reactions - Grade 11 15.1 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.1 What are acids and bases? . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.2 Defining acids and bases . . . . . . . . . . . . . . . . . . . . . . . . . . 267 15.1.3 Conjugate acid-base pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.1.4 Acid-base reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 15.1.5 Acid-carbonate reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 274 15.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 15.2.1 Oxidation and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 277 15.2.2 Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 15.3 Addition, substitution and elimination reactions . . . . . . . . . . . . . . . . . . 280 15.3.1 Addition reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 15.3.2 Elimination reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 15.3.3 Substitution reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 15.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 IV CHEMICAL SYSTEMS 21 The Lithosphere - Grade 11 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 21.2 The chemistry of the earth’s crust . . . . . . . . . . . . . . . . . . . . . . . . . 398 21.3 A brief history of mineral use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 21.4 Energy resources and their uses . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 21.5 Mining and Mineral Processing: Gold . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.2 Mining the Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.3 Processing the gold ore . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 21.5.4 Characteristics and uses of gold . . . . . . . . . . . . . . . . . . . . . . . 402 21.5.5 Environmental impacts of gold mining . . . . . . . . . . . . . . . . . . . 404 21.6 Mining and mineral processing: Iron . . . . . . . . . . . . . . . . . . . . . . . . 406 21.6.1 Iron mining and iron ore processing . . . . . . . . . . . . . . . . . . . . . 406 21.6.2 Types of iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 21.6.3 Iron in South Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 21.7 Mining and mineral processing: Phosphates . . . . . . . . . . . . . . . . . . . . 409 21.7.1 Mining phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 21.7.2 Uses of phosphates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 21.8 Energy resources and their uses: Coal . . . . . . . . . . . . . . . . . . . . . . . 411 21.8.1 The formation of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 21.8.2 How coal is removed from the ground . . . . . . . . . . . . . . . . . . . 411 21.8.3 The uses of coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 21.8.4 Coal and the South African economy . . . . . . . . . . . . . . . . . . . . 412 21.8.5 The environmental impacts of coal mining . . . . . . . . . . . . . . . . . 413 21.9 Energy resources and their uses: Oil . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.1 How oil is formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.2 Extracting oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21.9.3 Other oil products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 21.9.4 The environmental impacts of oil extraction and use . . . . . . . . . . . 415 21.10Alternative energy resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 21.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 22 The Atmosphere - Grade 11 22.1 The composition of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 421 22.2 The structure of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.1 The troposphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.2 The stratosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.2.3 The mesosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 22.2.4 The thermosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 22.3 Greenhouse gases and global warming . . . . . . . . . . . . . . . . . . . . . . . 426 22.3.1 The heating of the atmosphere . . . . . . . . . . . . . . . . . . . . . . . 426 22.3.2 The greenhouse gases and global warming . . . . . . . . . . . . . . . . . 426 22.3.3 The consequences of global warming . . . . . . . . . . . . . . . . . . . . 429 22.3.4 Taking action to combat global warming . . . . . . . . . . . . . . . . . . 430 22.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Member Rating
Curriki Rating3
On a scale of 0 to 3

Meiosis Lab

by Alison Loomis

The objectives of this lab are as follows: 1) To review the structure of a chromosome 2) To study the events associated with meiosis 3) To apply this knowledge to human genetics by analyzing a karyotype. This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This resource includes tutorials and problem sets on the following subjects: Monohybrid Crosses Dihybrid Crosses Sex-linked Inheritance This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This folder contains 5 chapters from the FHSST (Free High School Science Texts) Chemistry textbook. FHSST is a project that aims to provide free science and mathematics textbooks for Grades 10 to 12 science learners. The project was initiated by young South African scientists, and now brings together scientists from around the world who are willing to contribute to the writing of the books. These chapters come from Chemistry sub-topics such as Matters and Material, Chemical Change, and Chemical Systems but cover only chapters relevant to Grade 12. Below is a complete Table of Contents for this section. This resource is part of the FHSST Chemistry collection. TABLE OF CONTENTS II MATTER AND MATERIALS 9 Organic Molecules - Grade 12 9.1 What is organic chemistry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.2 Sources of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.3 Unique properties of carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4 Representing organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4.1 Molecular formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.4.2 Structural formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.4.3 Condensed structural formula . . . . . . . . . . . . . . . . . . . . . . . . 153 9.5 Isomerism in organic compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9.6 Functional groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.7 The Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.7.1 The Alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 9.7.2 Naming the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.7.3 Properties of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.7.4 Reactions of the alkanes . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.7.5 The alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.7.6 Naming the alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 9.7.7 The properties of the alkenes . . . . . . . . . . . . . . . . . . . . . . . . 169 9.7.8 Reactions of the alkenes . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9.7.9 The Alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.7.10 Naming the alkynes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9.8 The Alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.8.1 Naming the alcohols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.8.2 Physical and chemical properties of the alcohols . . . . . . . . . . . . . . 175 9.9 Carboxylic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.9.1 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9.9.2 Derivatives of carboxylic acids: The esters . . . . . . . . . . . . . . . . . 178 9.10 The Amino Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.11 The Carbonyl Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10 Organic Macromolecules - Grade 12 10.1 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.2 How do polymers form? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.2.1 Addition polymerisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 10.2.2 Condensation polymerisation . . . . . . . . . . . . . . . . . . . . . . . . 188 10.3 The chemical properties of polymers . . . . . . . . . . . . . . . . . . . . . . . . 190 10.4 Types of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.5 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.5.1 The uses of plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 10.5.2 Thermoplastics and thermosetting plastics . . . . . . . . . . . . . . . . . 194 10.5.3 Plastics and the environment . . . . . . . . . . . . . . . . . . . . . . . . 195 10.6 Biological Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 10.6.1 Carbohydrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 10.6.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 10.6.3 Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 III CHEMICAL CHANGE 16 Reaction Rates - Grade 12 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16.2 Factors affecting reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 16.3 Reaction rates and collision theory . . . . . . . . . . . . . . . . . . . . . . . . . 293 16.4 Measuring Rates of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 16.5 Mechanism of reaction and catalysis . . . . . . . . . . . . . . . . . . . . . . . . 297 16.6 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 16.6.1 Open and closed systems . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.2 Reversible reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 16.6.3 Chemical equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 16.7 The equilibrium constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 16.7.1 Calculating the equilibrium constant . . . . . . . . . . . . . . . . . . . . 305 16.7.2 The meaning of kc values . . . . . . . . . . . . . . . . . . . . . . . . . . 306 16.8 Le Chatelier’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 16.8.1 The effect of concentration on equilibrium . . . . . . . . . . . . . . . . . 310 16.8.2 The effect of temperature on equilibrium . . . . . . . . . . . . . . . . . . 310 16.8.3 The effect of pressure on equilibrium . . . . . . . . . . . . . . . . . . . . 312 16.9 Industrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 16.10Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 17 Electrochemical Reactions - Grade 12 17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 17.2 The Galvanic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 17.2.1 Half-cell reactions in the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . 321 17.2.2 Components of the Zn-Cu cell . . . . . . . . . . . . . . . . . . . . . . . 322 17.2.3 The Galvanic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 17.2.4 Uses and applications of the galvanic cell . . . . . . . . . . . . . . . . . 324 17.3 The Electrolytic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 17.3.1 The electrolysis of copper sulphate . . . . . . . . . . . . . . . . . . . . . 326 17.3.2 The electrolysis of water . . . . . . . . . . . . . . . . . . . . . . . . . . 327 17.3.3 A comparison of galvanic and electrolytic cells . . . . . . . . . . . . . . . 328 17.4 Standard Electrode Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 17.4.1 The different reactivities of metals . . . . . . . . . . . . . . . . . . . . . 329 17.4.2 Equilibrium reactions in half cells . . . . . . . . . . . . . . . . . . . . . . 329 17.4.3 Measuring electrode potential . . . . . . . . . . . . . . . . . . . . . . . . 330 17.4.4 The standard hydrogen electrode . . . . . . . . . . . . . . . . . . . . . . 330 17.4.5 Standard electrode potentials . . . . . . . . . . . . . . . . . . . . . . . . 333 17.4.6 Combining half cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 17.4.7 Uses of standard electrode potential . . . . . . . . . . . . . . . . . . . . 338 17.5 Balancing redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 17.6 Applications of electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.1 Electroplating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 17.6.2 The production of chlorine . . . . . . . . . . . . . . . . . . . . . . . . . 348 17.6.3 Extraction of aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . 349 17.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 IV CHEMICAL SYSTEMS 23 The Chemical Industry - Grade 12 23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 23.2 Sasol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 23.2.1 Sasol today: Technology and production . . . . . . . . . . . . . . . . . . 436 23.2.2 Sasol and the environment . . . . . . . . . . . . . . . . . . . . . . . . . 440 23.3 The Chloralkali Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 23.3.1 The Industrial Production of Chlorine and Sodium Hydroxide . . . . . . . 442 23.3.2 Soaps and Detergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 23.4 The Fertiliser Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.1 The value of nutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.2 The Role of fertilisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 23.4.3 The Industrial Production of Fertilisers . . . . . . . . . . . . . . . . . . . 451 23.4.4 Fertilisers and the Environment: Eutrophication . . . . . . . . . . . . . . 454 23.5 Electrochemistry and batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 23.5.1 How batteries work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 23.5.2 Battery capacity and energy . . . . . . . . . . . . . . . . . . . . . . . . 457 23.5.3 Lead-acid batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 23.5.4 The zinc-carbon dry cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 23.5.5 Environmental considerations . . . . . . . . . . . . . . . . . . . . . . . . 460 23.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Member Rating
Curriki Rating3
On a scale of 0 to 3

Learn the basics about nucleic acids, how they form base pairs, and undergo replication and translation, as well as the methods and findings of some of the classic experiments in this area. Instructions: The following problems have multiple choice answers. Correct answers are reinforced with a brief explanation. Incorrect answers are linked to tutorials to help solve the problem. 1. DNA, the genetic material 2. Meselson-Stahl, semiconservative replication 3. DNA replication I 4. DNA replication II 5. DNA replication III 6. Meselson-Stahl, second generation 7. DNA transformation 8. DNA base pairing 9. RNA 10. Translation 11. mRNA and translation I 12. Initiation and translation 13. mRNA and translation II 14. Codon-anticodon base pairing 15. Transcription This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

This section of Unit 1 - Atomic and Molecular Structure introduces and explains the Bohr model of electron configuration. This resource is part of the Chemistry collection, an open source California digital textbook plus supplementary resources.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

The objectives of this problem set are to test your understanding of how light energy is converted into different forms of chemical energy during photosynthesis, to review the equations for the light reactions of photosynthesis, to study the pathway for electron transport during cyclic and non-cyclic photophosphorylation, and to explore the mechanism for coupling electron transport to ATP synthesis. Instructions: The following problems have multiple choice answers. Correct answers are reinforced with a brief explanation. Incorrect answers are linked to tutorials to help solve the problem. 1. Chloroplast compartments 2. Energy source for ATP formation 3. Overall redox reaction 4. Result of electron transport 5. Overall energy source 6. Events during light reaction 7. Cyclic photophosphorylation 8. Equation for light reaction 9. Fate of excited pigment molecules 10. Overall result of photosynthesis 11. Photosystem II features This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki Rating3
On a scale of 0 to 3

The objectives for this problem set are to review the location and overall reactions of carbohydrate biosynthesis during photosynthesis, including RUBISCO, and to understand the difference between C3 and C4 plant leaf anatomy and pathways for carbohydrate biosynthesis. Instructions: The following problems have multiple choice answers. Correct answers are reinforced with a brief explanation. Incorrect answers are linked to tutorials to help solve the problem. 1. Calvin experiment 2. Calvin cycle reactions 3. Equation for dark reaction 4. Calvin cycle experiment 5. Basic equation of photosynthesis 6. Dark reactions 7. Products of the dark reactions 8. C4 plants 9. C4 photosynthesis This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Plant Evolution Lab

by Alison Loomis

By the end of this exercise, you should be able to identify the various lignified cell types in cross sections of stem. You should know how to tell a moss from a fern; a gametophyte from a sporophyte. You should understand which cells are haploid and which diploid, and whether they are formed by mitosis, meiosis, or fertilization. You should be able to apply this information to the reproductive cycle in gymnosperms such as pine. The objectives of this lab are as follows: 1. To look at cellular specialization in plants, with emphasis on lignified cells that function in water transport and/or support. 2. To study the evolution of these vegetative structures in representative plants: a moss, a fern, a gymnosperm, and both a woody and a nonwoody angiosperm. 3. To examine the evolution of sexual cycles in a moss, a typical fern, and a gymnosperm. This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

In this problem set, you will learn how metabolic acidosis or alkalosis can arise and how these conditions shift the bicarbonate equilibrium. The body's compensatory mechanisms and treatment options are also discussed. This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

"Sequence for Yourself" should give you a good idea on how to sequence the human genome. In other words, this animated activity will teach you how to determine the sequence of A's, G's, C's, and T's that comprise the genome. This resource is part of the Biology Links for One Laptop Per Child course which contains units on Exploring Life; The Cell; Genetics; Mechanisms of Evolution; The Evolutionary History of Biological Diversity; Plant Form and Function; Animal Form and Function; Ecology; and Astrobiology.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Some of the documents that I use at the beginning of the year and an introduction to lab safety.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Atomic Energy Levels - Video Clips

by Massachusetts Institute of Technology MIT OpenCourseware

These video clips are pulled from various sections of Physics I: Classical Mechanics. This resource is part of the MIT OpenCourseWare - AP Physics - Atomic Physics & Quantum Effects collection. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

The video clips contained in this section of the AP Physics materials cover wave-particle duality. This resource is part of the MIT OpenCourseWare - AP Physics - Atomic Physics & Quantum Effects collection. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

MIT OpenCoruseWare - AP Physics - Kinematics

by Massachusetts Institute of Technology MIT OpenCourseware

We have selected relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP® Physics curriculum. These do not comprise a full course of study but offer material to supplement the understanding of the AP Physics curriculum. Kinematics covers motion in one dimension and motion in two dimensions using a mixture of video clips, lecture notes, practice problems, and exam questions. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

MIT OpenCourseWare - AP Physics - Conductors, Capacitors, Dielectrics

by Massachusetts Institute of Technology MIT OpenCourseware

We have selected relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP® Physics curriculum. These do not comprise a full course of study but offer material to supplement the understanding of the AP Physics curriculum. Conductors, Capacitors, Dielectrics covers the topics of electrostatics with conductors; capacitors; and dielectrics using a mixture of video clips, lecture notes, textbook excerpts, practice problems, exam questions, and java applets. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

MIT OpenCourseWare - AP Physics - Circular Motion & Rotation

by Massachusetts Institute of Technology MIT OpenCourseware

We have selected relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP® Physics curriculum. These do not comprise a full course of study but offer material to supplement the understanding of the AP Physics curriculum. Circular Motion and Rotation covers the topics of uniform circular motion; torque and rotational statics; rational kinematics/dynamics; and angular momentum and conservation using a mixture of video clips, lecture notes, practice problems, and exam questions. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

MIT OpenCourseWare - AP Physics - Waves

by Massachusetts Institute of Technology MIT OpenCourseware

We have selected relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP® Physics curriculum. These do not comprise a full course of study but offer material to supplement the understanding of the AP Physics curriculum. Waves covers the topics of traveling waves, wave propagation, and standing waves using a mixture of video clips, lecture notes, textbook excerpts, practice problems, exam questions, and java applets. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

Physics Videos

by NextVista for Learning

These videos are designed to help students with Physics concepts.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

KS 3 Science: Light

by Andy Hannaford

Lodestar materials to support the teaching of light.
Member Rating
Curriki Rating3
On a scale of 0 to 3

KS3 Science: Magnetism

by Andy Hannaford

KS3 science material on the subject of magnetism
Member Rating
Curriki Rating3
On a scale of 0 to 3

KS3 Science: Speed

by Andy Hannaford

KS3 Science topic of Speed
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

MIT OpenCourseWare - AP Physics - Systems of Particles, Linear Momentum

by Massachusetts Institute of Technology MIT OpenCourseware

We have selected relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP® Physics curriculum. These do not comprise a full course of study but offer material to supplement the understanding of the AP Physics curriculum. Systems of Particles, Linear Momentum covers the topics of center of mass; impulse and momentum; conservation of linear momentum; and collisions using a mixture of video clips, lecture notes, practice problems, and exam questions. Prof. Walter Lewin, 8.01 Physics I: Classical Mechanics, Fall 1999. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Stanley Kowalski, 8.01 Physics I, Fall 2003. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. George Stephans, 8.01L Physics I: Classical Mechanics, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. J. David Litster, Prof. David Pritchard, Prof. Bernd Surrow, 8.01T Physics I, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Kate Scholberg, 8.01X Physics I: Classical Mechanics with an Experimental Focus, Fall 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Robert Redwine, Prof. Bruce Knuteson, Prof. Gunther Roland, Prof. Bolek Wyslouch, Dr. Brian Wecht, Prof. Eric Katsavounidis, Prof. Robert Simcoe, Prof. Joseph Formaggio, Andy Neely, Matthew Strafuss, Prof. Eric Hudson, Dr. Sen-Ben Liao, 8.02 Physics II: Electricity and Magnetism, Spring 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. Gabriella Sciolla, 8.022 Electricity and Magnetism, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Dr. Peter Dourmashkin, Prof. Gunther Roland, 8.02X Physics II: Electricity and Magnetism with an Experimental Focus, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA Prof. John Belcher, Dr. Peter Dourmashkin, Prof. Michael Feld, Prof. Eric Hudson, Prof. John Joannopoulos, Prof. Bruce Knuteson, Dr. George Stephans, 8. 8.02T Physics (Electricity and Magnetism) Labs, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed November 21, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

Biomes of the World

by Micki Halsey Randall

In this four-week unit, students explore biomes around the world and investigate further a specific biome and country within the biome they choose. The unit includes discovery activities to understand human population trends and statistics, natural resources and how they are used, common diseases and natural disasters in specific regions of the world, thermodynamics and home construction in different parts of the world, and biome characteristics. The culminating activity is a biome showcase; an opportunity for the students to present their work to adults and students in the class.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Developing Biology

by Robert Lucas

This course contains resources for teaching high school biology, from Developing Curriculum, Inc. It includes activities, labs, slide shows and worksheets on the topics of: Microscopes; Biochemistry; Cells; Cellular Transport; DNA; Photosynthesis and Respiration; Mitosis and Meiosis; Genetics; and Evolution.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Evolution of Earth

by Micki Halsey Randall

In this 6-week high school unit, students discover and learn about the evolution of earth, its formation, features, and changes over time. Students will explore each topic individually using hands on activities, notes, art and poetry. Connections between the topics will be made as the students develop a pop-up book as a culminating activity and formative assessment.
Member Rating
Curriki Rating3
On a scale of 0 to 3

A Home for the Season

by Micki Halsey Randall

Using home construction as the context, students explore the processes of thermodynamics and energy efficiency. Each student will choose a region of the USA and a season (summer or winter) and design an energy efficient home. Through the course of designing their homes, students investigate the forms of heat transfer in homes, energy efficient strategies available to reduce heat transfer, and the differences in climate within our country.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Digestion and the Food Chain

by Micki Halsey Randall

Students begin with a brief exploration of biomes. Then, as a class, the students choose a specific biome and examine a food web within it. This will lead to a discussion about predator/prey relationships. Students will develop an understanding of the differences within the digestive systems of different organisms and how the foods eaten correspond to the digestive system and biome of each organism. Finally, we examine the digestive system of humans in detail. The culminating event is a pop-up book about human digestion.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Evolutionary Patterns - Video Clips

by Massachusetts Institute of Technology MIT OpenCourseware

These video clips are pulled from various sections of Introduction to Biology and Introductory Biology. Prof. Eric Lander, Prof. Robert Weinberg, Dr. Claudette Gardel, 7.012 Introduction to Biology, Fall 2004. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 1, 2008). License: Creative Commons BY-NC-SA Prof. Tyler Jacks, Prof. Hazel Sive, 7.013 Introductory Biology, Spring 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 1, 2008). License: Creative Commons BY-NC-SA Prof. Penny Chisholm, Prof. Graham Walker, Dr. Julia Khodor, Dr. Michelle Mischke, 7.014 Introductory Biology, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 1, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Acids and Bases

by Micki Halsey Randall

In an introductory letter, students are asked to help develop a warning poster and pH scale of the items in their kitchen. In order to accomplish this, students will need to learn about acids, bases, and pH levels. Several labs and activities, as well as notes, help students to develop the knowledge needed to complete the final project, the poster.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Using a video as an introduction to the unit, many aspects of global warming and climate change are brought to the forefront. This is a heated debate in our society, so why not debate it in class? We do. Students break into groups for and against the idea humans must work to solve global warming right now. Both groups are provided the same informational resources in class and the rules for class debates. After the debate, students write a reaction and personal opinion paper about global warming.
Member Rating
Curriki Rating3
On a scale of 0 to 3

A document for students to introduce them to the requirements for their bridge building project.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

9 Evolution

by Robert Lucas

This unit includes resources, such as slideshows, an activity, and labs, on Evolution for high school biology students. This unit is part of the Developing Biology course.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Alkenes (SMART-created)

by SMART Technologies SMART Technologies ULC

Learn the generic formula for an alkene and the chemical structure of the first few alkenes. This lesson activity is also compatible with the Senteo interactive response system. To download Notebook interactive viewer visit www.education.smarttech.com/nbiv
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Animal and Plant Cell Differences (SMART-created)

by SMART Technologies SMART Technologies ULC

Cells, animal, plant, organelle, function, structure To download Notebook interactive viewer visit www.education.smarttech.com/nbiv
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Fighting Disease (SMART-created)

by SMART Technologies SMART Technologies ULC

Discover how the body's immune system fights disease. Label a diagram of an antibody. This lesson activity is also compatible with the Senteo interactive response system. To download Notebook interactive viewer visit www.education.smarttech.com/nbiv
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Functions of the Digestive System (SMART-created)

by SMART Technologies SMART Technologies ULC

Describe the functions of the digestive system. To download Notebook interactive viewer visit www.education.smarttech.com/nbiv
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Respiration (SMART-created)

by SMART Technologies SMART Technologies ULC

Describe the differences between aerobic and anaerobic respiration. This lesson activity is also compatible with the Senteo interactive response system. To download Notebook interactive viewer visit www.education.smarttech.com/nbiv
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

The Structure of the Digestive System 2 (SMART-created)

by SMART Technologies SMART Technologies ULC

Expand on a basic knowledge of the digestive system by labeling some detailed diagrams. To download Notebook interactive viewer visit www.education.smarttech.com/nbiv
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Handout on the 5 types of reactions. Asks students to give an example (or copy from the board during a lecture). Would work well as guided note-taking or as a practice worksheet.
Member Rating
Curriki Rating3
On a scale of 0 to 3

This document serves as background information for those teachers who are new to teaching science, as well as for any teacher that feels he or she needs a little reminder about the goals and terminology of the scientific process. Curriki community members are encouraged to edit this resource to include their own expertise!
Member Rating
Curriki Rating3
On a scale of 0 to 3

Ecosystems and Pond Life
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

WebQuest from National Geographic: Students help guide the everyday exploration of their community and become a backyard naturalist! Pretend they've just been hired as a local naturalist. They will need to prepare yourself to take groups of tourists on short nature hikes and answer their questions about area wildlife. Because naturalists are expected to know a lot about the local environment, the job requires you to become knowledgeable about local wildlife and learn how to collect and analyze biological data. This will ensure that they can answer all those tourists' questions! Students will construct maps to organize information. Recommend that students use computers to draw maps.
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

Investigation about density
Member Rating
Curriki RatingNR
'NR' - This resource has not been rated

learnthings's Collection

by Learnthings Africa

learnthings's Collection
Member Rating
Curriki RatingP
'P' - This is a trusted Partner resource

Tour of the basics of genetics from the University of Utah.
Member Rating
Curriki Rating3
On a scale of 0 to 3

Non-profit Tax ID # 203478467