Created on: September 8, 2008

Website Address: https://library.curriki.org/oer/Riemann-and-Trapezoidal-Sums--Textbook-Chapters

TABLE OF CONTENTS

- Riemann & Trapezoidal Sums - Lecture Notes
- Riemann & Trapezoidal Sums - Textbook Chapters
- Riemann & Trapezoidal Sums - Exam Questions
- Riemann & Trapezoidal Sums - Java Applets

These textbook chapters can be used to supplement your studies.

Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

This Calculus with Applications online textbook chapter covers finding Riemann sums with fixed widths using the leftmost, rightmost, maximum, and minimum argument in each strip, including comparisons of each and an applet for finding the leftmost and rightmost Riemann sums for a function. Course: 18.013A Calculus with Applications, Spring 2005 Instructor: Prof. Daniel J. Kleitman Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

This Calculus with Applications online textbook chapter covers the definition of this rule for approximating the area under a curve, including a measure of the error for this method compared to the actual value of the area. Course: 18.013A Calculus with Applications, Spring 2005 Instructor: Prof. Daniel J. Kleitman Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

This Calculus with Applications online textbook chapter covers the definition and formula for this rule which uses quadratics to approximate the area under a curve, including a comparison of this and the Trapezoid Rule. Also includes an applet for finding the area under a curve using the rectangular left, rectangular right, trapezoid, and Simpson's Rule. Course: 18.013A Calculus with Applications, Spring 2005 Instructor: Prof. Daniel J. Kleitman Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

This Calculus with Applications online textbook chapter covers using extrapolation to greatly improve the accuracy of approximations using the Trapezoid Rule or Simpson's Rule. Course: 18.013A Calculus with Applications, Spring 2005 Instructor: Prof. Daniel J. Kleitman Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode