Created on: September 5, 2008

Website Address: https://library.curriki.org/oer/MIT-OpenCourseWare--AP-Calculus--Second-Derivatives

TABLE OF CONTENTS

We have selected relevant material from MIT's introductory courses to support students as they study and educators as they teach the AP® Calculus curriculum. These do not comprise a full course of study but offer material to supplement the understanding of the AP Calculus curriculum.

Second Derivatives covers the topics of characteristics: graphs of f, f' & f''; the relationship between concavity of f and sign of f''; and points of inflection and concavity changes using a mixture of lecture notes and exam questions.

Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

<

The lecture notes contained in this section of the AP Calculus materials cover the characteristics of graphs of f, f’, and f”. Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

The lecture notes contained in this section of the AP Calculus materials cover the relationship between behavior of f & sign of f’. Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

The lecture notes contained in this section of the AP Calculus materials cover points of inflection and concavity changes. Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode