Created on: September 10, 2008

Website Address: https://library.curriki.org/oer/Lesson--Dilations-and-Isometry

TABLE OF CONTENTS

- Cluster - MA.8.CCSS.Math.Content.8.NS The Number System
- Curriki Project Based Geometry
- Cluster - MA.8.CCSS.Math.Content.8.EE Expressions and Equations
- Cluster - MA.8.CCSS.Math.Content.8.F Functions
- Cluster - MA.8.CCSS.Math.Content.8.G Geometry
- Cluster - MA.8.CCSS.Math.Content.8.SP Statistics and Probability

- Quiz - 8.SP Statistics and Probability: Investigate patterns of association in bivariate data: Standards: 8.SP.1, 8.SP.2, 8.SP.3, 8.SP.4
- 8.SP.1 Investigate patterns of association in bivariate data: Construct and interpret scatter plots
- 8.SP.2 Investigate patterns of association in bivariate data: Straight lines as models
- 8.SP.3 Investigate patterns of association in bivariate data: Use the equation of a linear model to solve problems
- 8.SP.4 Investigate patterns of association in bivariate data: Frequencies and relative frequencies

- Selling Geometry
- Designing a Winner
- What's Your Angle, Pythagoras?
- TED Talk: House of the Future
- The Art of Triangles
- How Random Is My Life?
- Introduction to Angles
- Lesson -- Drawing right triangles from word problems
- Accessing Curriki Geometry Projects
- Introduction to Curriki Geometry

- Quiz - 8.G Geometry: Understand congruence and similarity using physical models, transparencies, or geometry software Standards: 8.G.1a, 8.G.1b, 8.G.1c, 8,G.2, 8.G.3, 8.G.4, 8.G.5
- Quiz - 8.G Geometry: Understand and apply the Pythagorean Theorem: Standards: 8.G.6, 8.G.7, 8.G.8
- Quiz - 8.G Geometry: Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres: 1 Standard: 8.G.9
- 8.G.1 Understand congruence and similarity using physical models, transparencies, or geometry software
- 8.G.2 Understand congruence and similarity using physical models, transparencies, or geometry software: Two-dimensional figures
- 8.G.3 Understand congruence and similarity using physical models, transparencies, or geometry software: Effects of Transformations
- 8.G.4 Understand congruence and similarity using physical models, transparencies, or geometry software: Similarity with Transformations
- 8.G.5 Understand congruence and similarity using physical models, transparencies, or geometry software: Use informal arguments
- 8.G.6 Understand and apply the Pythagorean Theorem
- 8.G.7 Understand and apply the Pythagorean Theorem: Determine unknown side lengths and three dimensions.
- 8.G.8 Understand and apply the Pythagorean Theorem: Distance between two points
- 8.G.9 Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres

- Selling Geometry Resources
- Curriki Geometry Tools and Resources
- Lesson -- Rotation
- The World Runs on Symmetry
- Lesson -- Dilations and Isometry
- Lesson -- Composition of Transformations
- Cool Math 4 Kids: Tessellations
- Tessellations.org
- Euclid
- About Cloze Notes
- What's the point of Geometry? - Euclid
- Selling Geometry Project Teacher Edition
- Selling Geometry Project Student Packet

Lesson: Dilation and Isometries

Prerequisite Knowledge: Students should be familiar with reflections, rotations and translations. Students should be familiar with graphing on the coordinate plane.

Learning Objectives: Students will be able to identify and perform a dilation on the coordinate plane. Students will be able to understand the scale factor of dilation. Students will understand the concept of isometry and apply it to reflection, rotation and translation.

Key Ideas: Dilation (x,y) D scale of 4 (4x,4y)

The scale factor can refer to an enlargement or a reduction of a figure

Motivational
Problem: On a coordinate plane plot the points A(-2,0) B(-2,2) C(-1,2) and
D(0,-1). Perform the translation T(4,
-2). Plot the new points and record the
new coordinates labeling them A’B’C’. With the **original figure**
multiple each x,y coordinate by 3. Plot and record the new coordinates labeling
them A’’B’’C’’. Answer the following
questions about the new figures:

Important Questions: What is a scalar?