Created on: September 5, 2008

Website Address: https://library.curriki.org/oer/Analysis-of-Curves--Exam-Questions

TABLE OF CONTENTS

Teachers and students can use these exam questions and solutions to test the information learned.

Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

Prof. Daniel J. Kleitman, 18.013A Calculus with Applications, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Single Variable Calculus Questions 1 and 2 (and their solutions) cover sketching the graph of a function, showing all zeros, maxima, minima, and points of inflection. Course: 18.01 Single Variable Calculus, Fall 2006Instructor: Prof. David Jerison Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Single Variable Calculus Question 1 (and its solution) covers sketching a graph and finding the maxima, minima, points of inflection, and regions where the graph is concave up and concave down. Course: 18.01 Single Variable Calculus, Fall 2006Instructor: Prof. David Jerison Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Single Variable Calculus Question 2 (and its solution) covers sketching the graph of a function, including its critical points, points of inflection, and regions where the graph is increasing, decreasing, concave up, or concave down. Course: 18.01 Single Variable Calculus, Fall 2006Instructor: Prof. David Jerison Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Single Variable Calculus Questions 2B-1 through 2B-7 (and their solutions) cover sketching graphs and finding inflection points, maxima, and minima as well as regions where a function is increasing, decreasing, or zero. Course: 18.01 Single Variable Calculus, Fall 2006Instructor: Prof. David Jerison Prof. David Jerison, 18.01 Single Variable Calculus, Fall 2006. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Single Variable Calculus Question 2 (and its solution) covers sketching a graph and finding the asymptotes, maxima, minima, and inflection points of the graph. Course: 18.01 Single Variable Calculus, Fall 2005 Instructor: Prof. Jason Starr Prof. Jason Starr, 18.01 Single Variable Calculus, Fall 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed October 28, 2008). License: Creative Commons BY-NC-SA http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm#cc http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode