Created on: February 25, 2015

Website Address: https://library.curriki.org/oer/8F3-Define-evaluate-and-compare-functions-Interpret-the-equation-y-=-mx--b-as-defining-a-linear-func

TABLE OF CONTENTS

- Cluster - MA.8.CCSS.Math.Content.8.NS The Number System
- Curriki Project Based Geometry
- Cluster - MA.8.CCSS.Math.Content.8.EE Expressions and Equations
- Cluster - MA.8.CCSS.Math.Content.8.F Functions
- Cluster - MA.8.CCSS.Math.Content.8.G Geometry
- Cluster - MA.8.CCSS.Math.Content.8.SP Statistics and Probability

- Quiz - 8.F Functions: Define, evaluate, and compare functions: Standards: 8.F.1, 8.F.2, 8.F.3
- Quiz - 8.F Functions: Use functions to model relationships between quantities Standards: 8.F.4, 8.F.5
- 8.F.1 Define, evaluate, and compare functions: Understand that a function is a rule that assigns to each input exactly one output.
- 8.F.2 Define, evaluate, and compare functions: Compare properties of two functions each represented in a different way
- 8.F.3 Define, evaluate, and compare functions: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line
- 8.F.4 Use functions to model relationships between quantities: Construct a function to model a linear relationship between two quantities.
- 8.F.5 Use functions to model relationships between quantities: Describe qualitatively the functional relationship between two quantities by analyzing a graph

- CCSS 8.F.5 - video - Describing Functional Relationships
- Describing Functional Relationships from Graphs

IN COLLECTION

Define, evaluate, and compare functions: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Interpret linear equationsSupports the following Standards of Mathematical Practice• 2 Reason abstractly and quantitatively.• 5 Use appropriate tools strategically.• 6 Attend to precision.• 7 Look for and make use of structure.

Interpret linear equations